1.08 Mit Stellenmarkt -s.s6

avamagazin

Java - Architekturen - SOA - Agile

Javamagazin

www.javamagazin.de @@@

N

Testversionen & more Specials

* JOSSO 1.6 e JAX TV: Keynote
¢ Modeling Work- von der W-JAX 2007 :
work Project (EMF) flow Engine (MWE)

* Glassfish V2 * wing$ 3.1 ~ * Buchauszug:
Hibernate —

5 Praxisbuch fiir

+ Bonus-CD fiir Abonnenten: Alle Ausgaben aus 2007! | i " Entwickier

Sinale Sion-on

SSO-Systeme auf dem Prifstand

e CAS Server 3.1.1
¢ Eclipse Modeling Frame-

emarchitektur mit der UML
Kleine Anpassungen, groBer Nutzen

- Get your wing$S back! Rl
Framework fiir Ajax-Anwendungen <

- Domanenspezifische Sprachen
Erstellung einer textuellen DSL mit Xtext

- Software-Industrialisierung
Java Banking Framework

Offprint

Javamagazin

Java Performance Tools, Part 2

Profiling, Diagnosis
and Monitoring

[BY MIRCO NOVAKOVIC AND MARC VAN DEN BOGAARD

The market offers different profiling-, diagnosis- and monitoring tools, some of them differ strongly from
others concerning the functions. We will introduce some of them in this article, discuss the differences

and give you information for your choice.

Assoon as applications are used for mis-
sion critical processes, performance and
availability are important non-functio-
nal requirements. Different toolsare used
for ensuring the performance during the
complete lifecycle of an application. Ho-
wever, within the miscellaneous tool cate-
gories there are huge differences in func-
tionality and appliance. If a tool works
and how good it works will always de-
pend on the requirements you have. The
following examination of different tools
is not supposed to determine a “winner”
but describe different approaches and
functions with examples to facilitate the
choice and evaluation of performance
tools.

In the first part of this article series
about Java performance tools [1], the
basics and technologies of nearly all
tools mentioned have been described.
The Java performance tools have been
subdivided into three usage categories:
profiler-, diagnosis- and monitoring
tools. In the following, functions of and
requirements for these tools are descri-
bed and explained based on selected
products. It is not our aim to compare
the tools with each other and to show

2 Javamagazin Sonderdruck

advantages or disadvantages, but to de-
scribe available functionalities of state-
of-the-art performance tools to facilitate
your choice.

Profiler

A profiler is a tool for developer to ana-
lyze performance- and stability issues. A
profiler offers functionality to examine
run time behavior and concurrency of an
application as well as the storage behavi-
or concerning referenced objects and gar-
bage collection. When analyzing the sto-
rage behavior,a huge overhead is created,
caused by the profiler, which cannot be to-
lerated except in the development phase.
In the area of performance analysis, pro-
filer now work with byte code instrumen-
tation and offer options for an overhead
reduction with the help of filter functions.
With these filter functions you can specify
which methods, classes or packets should
be used as instruments. Profiler usually
work based on dedicated measurements
and so-called snapshots. These snapshots
contain all relevant measurement data,
can be stored and analyzed via user inter-
face of the profiler. A snapshot can be cre-
ated in different ways:

© Software & Support Verlag GmbH

® Manually via user interface of the pro-
filer or via command line interface.

e With the help of so-called triggers, trig-
ger events which start or stop a mea-
surement. A trigger can be the starting-
or quitting-point of a method but also a
threshold which is reached. Expanded
functions of triggers such as certain call
parameters for methods or the call fre-
quency are useful functions to control
measurements in detail. Triggers are not
related to alerting functions as they are
used for monitoring.

e With the help of an API. Some profi-
lers have their own API with which the
functions can be controlled. This means
that an arbitrary number of measuring
points can be defined and the developer
has maximum flexibility.

- but this also means the source code must
be assembled accordingly for this vari-
ant.

e With the help of ant tasks. Some profi-
lers offer ant tasks for automating the
measurements which can be started and
stopped with these ant tasks. Most of
the time the tasks work in combination
with the above mentioned triggers. Au-
tomating within a continuous integra-

www.javamagazin.de

Javamagazin

Offprint

Figure 1: JProfiler Call-Tree

W@ L

WM Telemetry Views

mmmﬁommt&

Bh%&lm@-c

3] Theead status: | == Runnable [v]

6% -1 N SRR
0,3% - 85.720 s - 2.621!!?]wn.(mgﬂ'nlddup
-5, 1% - 13,198 ms - | inv. jave.awt EventDispatchThread.run
W 41,6% - 12,182 ms - 2.602 inv. BezierAnim$Demo. paint
Q-SS,IM +9.699 ms - 2,602 inv, Beder,
1 16,8% - 4.910 ms - 2.602 inv. java.awt.Gr.
W 15,5% - 4.548 s - 2.602 inv. java.awt.Graphics2D.draw

m&&?&?

drawDemo

0,1% - 21512 ps- 5.204 inv. java.awt. Graphics2D,setPaint
0,0% - 12,115 ps- 2,602 inw. java.avit. Graphics2D.

)1 4,9% - 1.422 ms - 2,602 inv., Java.awt,Graphics. drawlmage

B 12,7% - 783 ms - 2,602 inv. BezierAnimdDemo.createdr.

10012,2% - 634 ms - 2.602 inv. fava.awt.Graphics. dearRect
0,1% = 26.978 ps - 2,602 inv, java.awt.image.Buff

0,0% - 10,920 us - 2,602 inv. java.awt.0eom GeneralPath, <ink >
0,0% - 10,505 s - 2,602 inv, java.awt.geom.GeneralPath, closePath

0,2% - 47.694 s~ 15.612 inv. java.awt.geom.GeneralPath.curveTo
0,0% - 13.341 ps- 2,602 inv. java.awt.geom. GeneralPath.moveTo
setStroke

o) 0,0% - 9,986 ps - 2,602 inv, java.awt.image,
0,0% - 9.487 s - 2.602 inv. java.ant.Cy

0,0% - 8.096 45 - 2,602 inv. java.ant

=) 0,6% - 159 ms - 2,602 . BezisrAningDemo.
2] - 93,083 s - 31,224 inw. mmmnnm
0,0% - 5.183 5 - 383 inv. java.lang.Math.random
0,1% - 14.669 s - 2.602 inv. Java.awt.Component.getSize

1
8 0,0% - 8.451 pis - 2,602 inv. java.awt.Graphics.dispese

0,1% - 22,051 s~ 2.602inv. java.awt.Graphics2D setRenderingHint
&Mnmqﬂm

.Graphics20. setBackground
0,0% - 7.594 s - 2,602 inv. Mmmmmm

(] [CReset view Fiters | _Shon GobalFiters_|

Call Tree | Hok Spots | Call Graph | Call Tracer |

[2 Autoupdatess [002 [Profilng.

tion [2] build process reduces the time
for the performance data survey. It is
also the most efficient way to establish
the profiling within the development
process.

¢ Some profiler also work in ,,always on“
mode which means that each profiling
diagnosis and monitoring activity is re-
corded. The user can decide afterwards
which dataisto be stored.

Apart from these general functions, the
integration into the development envi-
ronment plays a substantial role when
choosinga tool. Most profilers have their
own user interface, but offer integration
into IDEs so start configurations (e.g. for
Eclipse) can be adopted. Another integra-
tion method s linking the sources. When a
hotspotisfound,ajump to the correspon-
ding code will occur.

Open source profiler like Eclipse
TPTP [3] or Netbeans Profiler [4], on the
other hand, are plug-ins for their IDE and
thus completely integrated.

Profiler offer different views for the
run time analysis. The most popular are:

www.javamagazin.de

o the call tree, which depicts the methods
calledinatree,accordingto their call hi-
erarchy. This makes it easier to identify
critical paths. Figure 1 shows a call tree
in JProfiler [5].

o the call graph which depicts the callsina
directed graph. This allows a quick ana-
lysis of the critical path. The method list
which displays all methods in a list so
they can be sorted according to the hot-
spots or examined for certain noticeable
parameters.

Apart from the form of presentation, the
captured data is particularly important.
Most offer profiler data about the run ti-
me of methods and differentiate between
clock time and CPU time. Clock time is
the actually measured run time of the me-
thod and CPU time is the time in which
the CPU has worked for this method. This
means that clock time minus CPU time is
the time in which the method waited for
other resources. Apart from this data, ma-
ny profiler offer data about the GC-time,
the number of created objects, method
parameters or additional information

© Software & Support Verlag GmbH

about certain technologies. dynaTrace
Diagnostics [6] for example uses the Pure-
Path-technology which generally collects
alldata ofacall path abouta defined entry
point. The PurePath is captured beyond
the JVM-limits and thus enables perfor-
mance measurements in distributed mul-
ti-level architectures.

Apart from Java, .NET is supported
which means that interactions between
these technologies can be analyzed. The
PurePath itself is depicted as call tree,
as you can see in figure 1. It contains on
request, apart from the data mentioned
above, information about method para-
meters and the return value, HTTPreque-
st parameters, header and session attri-
bute values, SQL statement parameters or
the size of serialized data of remote calls.
With the help of so-called sensor packs,
the captured data for certain technologies
is defined and integrated into the tool. dy-
naTrace Diagnostics already offers a huge
number of sensor packs for the different
Javatechnologies and frameworks but al-
so enables the creation of custom sensor
packs.

Sonderdruck Javamagazin 3

Offprint

Javamagazin

Figure 2:
dynaTrace
= - Diagnostics
AL il PurePath
ot Tectoe (TN Bazs ao
;i G,‘lg""mm [— |
* 5L Contiguastons | P Agert Soe Duaion ms] U Dussion] ‘Syea: Duastion ma]
- dgerts . EpacaFrontend.. (2] 12025 s (1}
i Lo o toe a0t oS paceFrrtendEan e 1508 & 00
=+, Dlagrose Pesomance @ o TN BapacafonisndEa.. w7 "] 00
“ Business Tuwmacton) BeSpacefiortendEoe 8 oM o 0]
5 4P Breshadonn ° Goipacefiortendian w nxme £ [17)
£ PurePalba - GBS pacaFiontendBan. n LT 1] (1]
L Wb Reqursts ° ExSpacaFroriendBa. = 087 =0 [T}
] Databiee ° EopaceFrorisndin n 040 e [+
Renctrg ° GoSpacefiontendan. 0 2@ 1852 00
B Wb Senvces ° Euipacefioriendinn . 1% s [
B Componens [GoSpaceFiontendnan "y s =0m (1]
B Haming Services . EelipacafrontendEas. (-] W ns (1]
4 Heragng - GeSpaeFrreni@an n =% ELrd]
B Mathah o GeSpaceFionendiun 108 120054 ms 1]
%I‘ Hesmany Mozatioen . GepsceFontend@an " L 1562 1]
47 Cutiom Enty Poinis
U Togoed e Regants
ol g Evarts
&L, Dlagrasee Aurime.
i <1 Pepoty
iq snnu‘m [£y
© Incidert 2007 301220750 Lo T } e
Incident 2007 DRI 222148 Mieihod Ot At R Agent il Toa]]
© ncident 20010111300 = dFo o wch GeSpaceFroniendBe.. S, Senkt " [
© ncidert 2007, 1847141758 * 3 St o (14
O et 2007101714 1008 lrcSictionConfigfava lang Stwg] o apache siadicon.. feguey DcSpaceFroniendBie . S nor or!
2 31 Repository - localhost: 2070 = i GofbpaceFroniende Sty as [T
B Oun I amBsanCantgiava g Strgl g pache it con_ quesy Be_ o an [
=03 Offine B L Gubpacefmrienad®: Dofpace a5 a7
o Gk aetPesouceSheunialang S¥ing) comfoschace goa.. ek prapssie GobpaceFroriendBe . GoSpace [03
lechupfivalang Svral v paming beiaCo. GobpaceFronkendB JNDH 07 4z
cseatel] TPl Getpacefuorienaliz_ AMI o 12e
& com joadhace gaon GefipeceFroniendiBy . GoSpace 2 o
= gmlenfesites s Mag) com foachiace g GeSpacefoniend@s . GoSpece L ot
GoSpaceFronnd®s.. Sints an [
. - [688 g
| 2 — (2]
Tinw Vieuslsion AP Dubiufien |
OMps & [hcencs ok

To analyze synchronization- and
deadlock issues, you need information
about the wait- and synchronizing times
which have already have been described
during the run time analysis. Some pro-
filers also offer expanded analysis func-
tions to analyze particularly these issues
indetail. JProfiler for example offers a hi-
story overview of all threads and their sta-
tus (runnable, waiting, blocked, Net I/O)
over time. With the help of the current
monitor usage view you can get a quick
overview of the monitors which keep the

threadsin certain classes. You can also see
the threads which await the release from
the monitor.

JProfiler shows, apart from the wai-
ting threads and the threads to be blo-
cked, traces which led to the synchro-
nized resource. That way synchronizing
issues and deadlocks can be identified
quickly.

JXInsight [7] also has a timeline
graph to identify so-called ,,concurrent
workload patterns“. Figure 3 shows
such a pattern. You can see two phases in

Timeline Graph

ns 15:26:32 130ms 15:26: 35 600ms 15:26: 39 070ms
etk i} W b
1w | N o 21 o o o 4
|01 T 000 .|
= - i

Figure 3: JXInsight
Timeline Graph

Javamagazin Sonderdruck

© Software & Support Verlag GmbH

which the response time of the system is
particularly bad from time to time. This
is shown with the red bars in the top part
of the graphics. In the lower part, the re-
quest including the updates (blue bars)
and selects (yellow bars) are depicted in
data base tables. It becomes apparent
that the simultaneous access of multiple
threads to one and the same data base re-
source led to table locks which explains
the higher response times. Apart from
the run time- and concurrency analysis,
the analysis of the memory and garbage
collection is an important profiler func-
tion. To identify so-called cycling objects
(a high quantity of temporary objects
which have a negative effect on the gar-
bage collection), profiler can also record
all objects which have been created duri-
ngameasurement. The profiler generally
differentiates between objects which ha-
ve been cleared by the garbage collection
and those which still are referenced to in
the memory.

Profiler suchasJProbe[8]and JProfiler
also offer the option to display allocation
trees for the created objects. This means
thattheallocation hotspotsinthe code can
be identified quickly. To identify Java me-
mory leaks you need different functions.

www.javamagazin.de

Javamagazin

Offprint

It is important that you can compare
memory snapshots created in different
points in time, to get a first hint which ob-
jectswere added to the heap.

When the heap objects are captured,
the overhead is enormous. This is why
most tools offer the option to create
snapshots which do not contain any in-
formation about references between the
objects. With the help of these snapshots
and the option to compare them you get
a list of potential memory leak candi-
dates. To analyze the exact cause of the
memory leaks you need a heapdump
which captures all heap objects inclu-
ding the references between the objects.
Some tools also offer the option to cap-
ture the object content so you get infor-
mation similar to the information in a
debugger.

Apart from the memory leak analysis,
you can also assess the object size. This is
particularly helpful when you need exact
data about session- or cache sizes. The
overhead for creating a heapdump is very
high which means thatin productive envi-
ronments an analysis is, most of the times,
not possible.

As described in the first part of this
article series, state-of-the-art JVMs of-
fer the function to create automated
heapdumps if an OutrOfMemoryError
occurs. JProbe and JProfiler offer the op-
tion to read-in these heapdumps (JProbe
for IBM and JProfiler for Sun Hotspot)
and to convert them into the profiler-spe-
cific format. That way current memory
leaks can be analyzed with profiler func-
tions. There are different methods and
approaches for the identification of me-
mory leaks. Most profiler support an au-
tomatic calculation of the path to the GC
roots to identify the potential reference
paths that cause a memory leak. JProbe
offers Leak Doctor, a tool which tries to
identify memory leaks based on different
algorithms. With the help of the common
parent analysis, the tool analyses e.g. if
objects of the same type have common
parent objects. This is for example the
case if the objects are in a common cache
and this still contains the references to
the cache entries.

dynaTrace diagnostics shows object
allocation in the described PurePath so

www.javamagazin.de

L 12 TR T
Loltoring Object : Hashiap 36440
Invrstigation Options " Ahitriuites 47491
Usa Case Boundary Analysts 1
Common Parent Analysis

_ Reference Gragh From Roots

Hin valante

PossileCauses
TheeataithAttibutes 47491

Roquest 774530

Response 774538

Dvawe Gragh ;

Figure 4: JProbe Leak Doctor

memory leaks can be attributed to single
calls. The objects that are captured duri-
ng this are defined via so-called memory

getting exact load test results. Many soft-
ware producers state overhead in per cent
numbers, but these values are not easily

sensors. transferable to your own environment.
. . The overhead of a tool strongly depends
Diagnosis on the set filters and the application to be

measured.

If, for example, 80 % of the response time
for a request is used in the data base and
the byte code instrumentation reaches
an overhead of 10%, then only 20% of
the response time is affected by that - the
evident overhead is thus only 2%. But
if millions of methods are called and all
captured, the overhead is considerably
higher.

In some tools, the filters can be adjusted
to the run time and activated. The dyna-
mic byte code instrumentation of Java 5
is used for that. Re-starts of systems are
minimized with this technology.

In quality assurance,appliancesare tested
with the help of performance- and load
test, so you can see whether they meet the
requirements concerning response beha-
vior, throughput, parallel users and stabi-
lity. This test is called black box test as it
is not possible to analyze the cause for a
requirement which is not met. Diagnosis
software bridges that gap and offers the
option to analyze run time, concurrency
and storing behavior under load. In con-
trast to profilers, these tools capture less
detail and also include system metrics
into the measurement. The overhead
of these tools is a substantial factor for

VM5 Ovarbad for Appleation T afaut (B0t
Jotts 10

| mlio =

8
et
ts s s 828t

)
>l o x

i

Figure 5: PerformaSure metrics browser

e
- % 8 3 B 8 E F

© Software & Support Verlag GmbH Sonderdruck Javamagazin 5

Offprint

Javamagazin

— 8 foghgh | 13 Admewranon | 7 rele | € Sonow

arZ3 007 1150090 Pu £0T
Srhyreg ™ vin® halp

itm;m A
i Core: Core e L I Y.
S Core: bomain Summary Severity Time Rube Marve Sowrce z

D | NT Bvent Log: System NETLOGON This ~
B Core: Model Brawser Ccompuber was Not able t0 Set UD & Setre r

iy * azuer mt:u-q»ae:;mm:lr‘: ‘2
e L33 MLOTOR dus o the fokowng: The ooeraton Eversieg e e
5 FSAE 2008 9030 Buskder logon bervers v adible Lo vervics the logen |
WS Appheatian TRagd regueasl. Thas may lea |
e o e ST
WFI Home .

PR service Buldes

' Servicy
: Lol Bl Adares Sis Statw

WFIM Service Level

=::= mﬂ'lwh'- ot w Vet Al Pale
' Sarvice Trage —_— —

P38 Transacton Bulder 158 wo s ®
T dawakt Aoyl sy P43 - 80 3 = L]
O oo . $-1 = 32003 = i@
HUrer Dashbpards R R o oy e (-]
Beander e 6o 4 =— @

".._.‘“ FackvC ategory 3 3. - 20 1 = L]

Organze = W 60 3 - -

2
ooy nt 1 \ 2 -1 — 30 2 == g
i Geagragheal * s » [3] 2 S -
A |\" LA Wewca ol - 00 2 == o
| . cortantSwtohas (/s) | e (1)
|
| | Application Health= Avg. Execution Time (s/cal) Cadll Count 4000
| | MedRectan - wa e
2000
000 n
-e—
| B Copwigd Cuest Saltmere. T | Comtart Uy | Aieat

Figure 6: Foglight 5 Dashboard

Apart from the time overhead there is al-
ways a memory overhead. That means
the measured data is kept in the memory
by most of the tools and then sent to a
remote data server, asynchronous and
in regular intervals, to prevent a perfor-
mance overhead. This is why a reduced
performance overhead often means
more memory usage. For these reasons
it is difficult to compare diagnosis- and
monitoring tools in the overhead area
—in reality, only a proof of concept can
show whether a tool is appropriate for a
certain environment and for your own
application.

Diagnosis tools work, in most cases, ba-
sed onan agent technology.

This means that the systems to be tested
are equipped with an agent that sends the
datatoacentral dataserver. Theagentsare
only data collectors when this happens,
all processing logic occurs on the server.
The data evaluation is realized with the
help of an own client which connects to
the dataserverand prepares the requested
data graphically for an analysis. For the
current distributed architectures it is im-
portant that diagnosis tools capture data
across JVMsto be able to analyze call gra-
phs connectedly. In a distributed EJB or
web service environment, the data would
otherwise have to be merged manually.
There are two different approaches for
capturing data in diagnosis tools.

6 Javamagazin Sonderdruck

Most tools work with statistical values
and capture so-called samples of the in-
coming requests. The data is aggregated
in certain time intervals and correspon-
ding minimum-, maximum- and average
values are generated. With the help of
this procedure, critical requests, classes,
SQLsand methods can be analyzed —sin-
gle outliers however cannot be identified.
Quest PerformaSure [9] is a typical exa-
mple for a diagnosis tool based on this
procedure.

The dynaTrace Diagnostics-PurePath-
approach captures each incoming request
by default. With this procedure single out-
liers can be identified. With the help of the
context data of the PurePath (e.g. request
parameters, method parameters) you can
also analyze on which parameter the out-
lier possibly depends. In the case of a rule
violation within a PurePath the whole
corresponding PurePath or PurePaths of
the following time period can be archived
for analysis.

Apart from the instrumentation data,
some more data plays an important role
in diagnosis to analyze potential resour-
ce shortfalls. Among these is, for examp-
le, system data (e.g. CPU, memory, I/O),
application server statistics (e.g. data
source- and threadpool-utilization) and
JVM-statistics (e.g. heap, GC, threads)
are important to identify potential bot-
tlenecks. PerformaSure, for instance, al-

© Software & Support Verlag GmbH

lows showing the correlation between the
collected metrics and the requestresponse
times. This means you can see the con-
nection between the utilization of a data
sourceand a bad response time.

An important function is the option to
pass the results to the developers so the
identified problems can be analyzed and
corrected quickly. dynaTrace Diagnostics
enables storing each PurePath. This can
then be opened by the developers and lin-
ked directly to the sources with the help
of an Ecplise plug-in. That means the pro-
blems with outliers or bad response times
can be identified quickly. The advantage
of this approach is that a problem can
be analyzed without reproduction in the
development environment. Performa-
Sure uses integration with JProbe for the
communication with the developers. For
critical classes or packets launcher files
(parameter information) can be exported
directly for JProbe. These files contain
corresponding filters to analyze the pro-
blem in the profiler.

Monitoring

In the area of monitoring tools there are
differentapproachesand architectures.
Generally we distinguish between tools
which have an end-to-end-monitoring
approach (Quest Foglight 5 [10],IBM IT-
CAM [11]) and tools with which the Java
platform is monitored as central integra-
tion component of current applications
(CA/Wily Introscope [12], dynaTrace
Diagnostics). End-to-End monitors do
not only monitor Java but also different
system components such as network in-
frastructure, data base, SAP, Siebel and
mainframe applications under CICS or
IMS. The advantage of this approach is
that problems in the whole infrastructure
can be identified. Foglight 5 makes it pos-
sible to write custom agents, additionally
to the supported systems, and to integrate
these agents into the monitoring infra-
structure. That way, you canintegrate e.g.
self-developed C++ server into the moni-
toring process.

The Java monitoring tools concentrate
on the Java components and integrate
into monitoring infrastructures such as
Tivoli or HP OpenView via the SNMP
(simple network management proto-

www.javamagazin.de

Javamagazin

Offprint

%
e e Rl ! Ot los Felew
¥k DimanCarts nakefad oo pache s A ol W01 APt iove
|2 Excepiors ke oug spache sés tisnport hilp HT TPSandei 158 HTTPSanderjovs
|l Loggng | sk 0ag.aguache et s SorSralegy -] !
A Incidents deisling apache s - 118 SmgleChanjsa
., Disgnose Runime veke 5. spache mon SengleChan 83 SimpleChanisa
-G Papost | iwvoke 45 3pache. s chand fusaClant 165 AsisChert v
& 770 Hebclwiodd | iwckeEngng oo apache s cient.Cal 2084 Caljava
=53 Stoned - localont:-2020 iwvoke 40 spache ses.chanl Lol 2067 Calva
; ke ‘cug.apache win.chent Cal 2003 Caljva
© lcident-2007.09,01-22.07:50 it ng apache. win chent Cal 2366 Caliva
Inecidert- 200709012221 48 wvoke g pache. iz chand Cal 1812 Caljwva
9 Incideed 2007101 7130034 | logn il x 28 i i
o ncidert 2007, 1017141759 | tagn ‘com hoadusce dotnetpaphiontend mis] NelPapha TWebSerrsCient 56 WetP o TebS erviceClent jova
b il invchel sumsefect N ::;hmm
= 11 Repastory - localkost: 2020 [T ——
) Owats | ok sunsefiect NathpMethodtoredngl 33 Habvelathodhecessodmpl s
Dt ivvoke sunseflect Delegals 25 Delagatnghethodtccenodmpljsvs.
=t ke o lang reflect Method 557 Methodjeva.
g . Y oelCoves 11 StaisuessorContanes java
b sorConk 564 StsishiSessonContanes java
iwvoke sunsefiect NativeMethodhcoesscdmel 3 Newwblethodiccessormpljsvs
| ke i sefect Delegsls 25 Delegaing
| p SRR ;‘ Cocuet e
. = 2 B S evminicariecesios
5 =]

Figure 7: dynatrace diagnostics error analysis.

col) or provide their data via other inter-
faces.

Generally, Java monitoring solutions ha-
ve to fulfill two primary requirements:

® Monitoring and logging of the operation
¢ Erroridentification and analysis.

Particularly in environments in which
mission-critical applications are run,
it is important to ensure a complete sy-
stem monitoring. If a system downtime
occurs, the administrator must be able
to anticipate this if possible and must be
informed immediately. Monitoring tools
offer different functions for that. With
the help of so-called dashboards the sy-
stem status can be displayed visually.
The dashboards function according to
a drill-down principle. On the top level,
the applications or servers are displayed
and the system statusis shown according
to the traffic light principle (green: eve-
rything okay, yellow: critical, red: very
critical or downtime). Based on the coll-
ected data, the status of acomponent can

www.javamagazin.de

be configured. You could, for instance,
define that a system is green when the
CPU usage is < 70%, yellow between
70% and 90% and red from 90% up-
wards. These so-called thresholds or
incidents can, in most tools, also be de-
fined based on response times of trans-
actions or requests. The dashboards ha-
ve a hierarchic structure so that the top
level always adopts the critical status of
a subordinated component. If a system
goes to red or yellow, the administrator
candrill down in the dashboards until he
identifies the critical components. The
dashboard technologies are substantial-
ly different: Wily Introscope uses a Java
Client, whilst Foglight 5 offers a state-of-
the-art,AJAX-based web surface (fig. 6).
Both tools enable the display of custom
dashboards per drag-and-drop. With
the help of this function, “business da-
shboards” can be created which prepare
data for the management. So-called de-
rived metrics also enable the administra-
tor in Foglight 5 to derive new metrics
from different metrics, for instance for a

© Software & Support Verlag GmbH

trend analysis. Based on metrics and in-
cidents, most monitoring tools allow the
control of actions. These actions can, for
instance, send an e-mail or text message
when a certain critical status is reached.
In certain cases, an active reaction to the
status is possible. That means an additio-
nal server could automatically be started
or a less important application could be
stopped, for instance, so an application
with a higher priority can run withoutin-
terruption.

In the area of monitoring, the duration
of keeping the data is important, too.
Monitoring data must normally be kept
over months—thisis the only way a trend
analysis can actually work. Apart from
that, SLAs (service level agreements)
with the client or buyer are agreed on
very often nowadays. Monitoring tools
can monitor these SLAs and generate
corresponding SLA reports. Data kee-
ping cannot be managed durably wi-
thout data aggregation in most cases -
the data amount would simply become
too big. This is why the monitoring data

Sonderdruck Javamagazin 7

Offprint

Javamagazin

is aggregated gradually. All details are
stored for 24 hours and then aggregated
within configurable time intervals. The
older the data the bigger is this time in-
terval. It is important that monitoring
tools allow for a high flexibility in this
area, so single values (for instance) or
single applications can be treated in dif-
ferent ways.

Apart from these functions, some moni-
toring solutions specialized on Java also
offer functions for the diagnosis of errors
and performance-bottlenecks during
operations.

dynaTrace Diagnostics, for example,
captures the PurePath of each incoming
request or Java- and .NET-call and deli-
vers the described sensor data. This high
degree of details reduces the time to error
correction considerably. Each exception
andeacherrorlogentry is captured by the
sensors and stored including the corre-
sponding PurePath.

This means that, when an error occurs
during production, the corresponding
PurePath can be given to the developer by
the operators. The PurePath contains the
whole call tree of the corresponding call
including the request- and method para-
meters. This means thata reproduction of
the erroris easy. Without such a technolo-
gy, such errors sometimes require days to
be reproduced by the developer. The same
goes for performance or resource bottle-
necks —the PurePaths of the correspondi-
ng calls are all captured individually and
can be analyzed online or offline.

CA Wily Customer Experience Mana-
ger and Foglight End User Management
are examples for specialized solutions
for monitoring to measure the response
time behavior of an application from the
user’s point of view. Particularly these da-
ta deliver important information about
the question whether mission-critical
processes can be processed without pro-
blems. Both tools also offer the option to
store the displayed websites of the users
to provide them to the supportspecialists.
With the help of created transactions it
can be ensured that the application fulfils
the requested SLAs from the user’s point
of view.

The different approaches of the tools
show that the requirements are the most

8 Javamagazin Sonderdruck

important factor for choosing a monito-
ring tool. Very often, a single tool does not
cover all requirements so you might need
a combination of different monitoring
tools.

CGonclusion

This article has given you a short over-
view about the functions of profilers,
performance, diagnosis- and monitoring
tools. In environments in which mission-
critical applications are developed, tested
and operated, these tools are important.
They help in the case of performance bot-
tlenecks, stability problems or production
errors to find a solution for the problem.
First and foremost, the tools prevent un-
necessary finger pointing between the
individual organization units as the black
box Java application becomes easier to
comprehend forallinvolved.

Mirko Novakovic is manager of codecen-
tric GmbH and specialist in the areas per-
formance tuning, Java-EE-architectures and
open source frameworks.

Marc van den Bogaard works as IT Consul-
tant in open source-based Java EE-projects
and consults customers with performance
and stability problems.

@ Links & Literature
[1] Mirko Novakovic, Marc van den Bogaard:
Java Performance Tools, Teil 1, in Java Magazin
12/2007

[2] Continuous Integration: martinfowler.com/
articles/continuousintegration.html

[3] Eclipse TPTP: w ipse.org/tptp/

[4] Netbeans Profiler: etbeans.org/products/
profiler/

[5] JProfiler: www.ej-technologies.com/products/
jprofiler/overview.html

[6] dynaTrace Diagnostics: v dynatrace.com

[7] JInspired JXInsight: www.jinspired.com/

[8] Quest JProbe: w
[9] PerformaSure: v
[10] Quest Foglight: \
[11] IBM Tivoli Composite Application Manager:

quest.com/jprobe/

quest.com/performasure/

.quest.com/foglight/

www.ibm.com/software /info/tivoli/itcam/de
[12] CA Wily Introscope: ww

solutions/products/Introscope.html

.wilytech.com/

© Software & Support Verlag GmbH

dynaTrace

software

Freistadter StraBe 313
4040 Linz

Tel. +43 732 908 208

Fax +43 732 210 1000 08
office@dynatrace.com
www.dynatrace.com

www.javamagazin.de

